CS 1502 Exam II

Robert Daley

10 November 2005

Instructions: This is a closed book, note and neighbor exam! You must **show all work** in the space provided on this test.

Name:

<table>
<thead>
<tr>
<th>Question</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
Question 1 (25 points) Translate the following English sentences into first-order sentences, where the first-order language has the following:

- predicate symbol $L(x, y, z)$ to be interpreted as “x likes y at time z”.
- constant symbol m to be interpreted as “I” or “me”.
- function symbol $f(x)$ to be interpreted as “x’s best friend”.

a) I always like people who like my best friend.
b) Sometimes I don’t like myself.
c) I always like people whose best friend likes me.
d) I never liked my best friend’s best friend.
e) I’m the only person who ever liked me.
Question 2 (25 points)

a) State the Universal Introduction (∀ Into) rule of inference for the Fitch system.

b) State the ∃ Elim rule of inference for the Fitch system.

c) Construct a formal Fitch style proof using only the primitive rules of inference (i.e., no Taut Con, Ana Con, or FO Con uses) showing that ∀xP(x) ∧ ∀xQ(x) is a first-order consequence of ∀x(P(x) ∧ Q(x)).
Question 3 (25 points) Using the Resolution Method show that the sentence $\forall x \exists y U(y, x)$ is a first-order consequence of the sentences $\forall w H(w)$ and $\forall x[H(x) \rightarrow \exists y U(y, x)]$.
Question 4 (25 points)

a) Give the definition of a first-order structure M for a first-order language L.

b) Show that $\exists x P(x) \lor \exists x Q(x)$ is a first-order consequence of $\exists x (P(x) \lor Q(x))$ by showing for any model M that if $M \models \exists x (P(x) \lor Q(x))$ then $M \models \exists x P(x) \lor \exists x Q(x)$.