CS 1502 Exam III

Robert Daley
15 December 2005

Instructions: This is a closed book, note and neighbor exam! You must show all work in the space provided on this test.

Name: ___________________________

<table>
<thead>
<tr>
<th>Question</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
Question 1 (25 points) Using the method given in the book construct a deterministic finite automaton which is equivalent to the following non-deterministic automaton:

Note that you need only provide the “reachable part” of the book’s construction.
Question 2 (25 points)

a) For each of the following languages construct a deterministic finite automaton (DFA) that recognizes it:

i) \(L_1 = \{ w \in \{a, b\}^* : w \text{ has an even number of } a’s \} \)

ii) \(L_2 = \{ w \in \{a, b\}^* : w \text{ ends in } ab \} \)

b) Using these two machines construct a DFA for the language

\[L_3 = L_1 \cap L_2. \]
Question 3 (25 points) Using the method given in the book construct a regular expression over the alphabet \{a, b\} which describes the language recognized by the following finite state automaton:

Be sure to include complete details of your construction.
Question 4 (25 points)

a) State the Pumping Lemma for Regular Languages.
 [Be sure to include all required quantifiers and components of the statement.]

b) Consider the following language

 \[L = \{ w \cdot w^R : w \in \{a, b\}^* \}, \]

 where \(w^R \) denotes the reverse of the string \(w \) (e.g., \(abb^R = bba \)). Prove that \(L \) is not regular by using the Pumping Lemma for Regular Languages.