CS 1511 Exam III

Robert Daley

4 December 2002

Instructions: This is a closed book, note and neighbor exam! You must show all work in the space provided on this test.

Name: ____________________

<table>
<thead>
<tr>
<th>Question</th>
<th>Percent</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
Question 1 (25 points)

a) Give the definition of the $TQBF$ problem.

b) Prove that $TQBF \in PSPACE$.
 Be sure to include correctness and complexity bounds in your proof.
Question 2 (25 points)

a) Give the definition of the PATH problem.

b) Prove that PATH ∈ P.
 Be sure to include correctness and complexity bounds in your proof.
Question 3 (25 points) State whether the following statements are TRUE or FALSE or UNKNOWN and **Explain** your answer.

a) $TQBF$ is NP-hard.

b) If C is NP-complete and $A \leq_p C$ and $A \in NP$, then A is NP-complete.

c) If $CLIQUE$ is NP-complete, then $P = NP$.

d) E_{CFG} is NP-complete.

e) $3SAT$ is PSPACE-complete.
Question 4 (25 points)

a) Give the definition of the VERTEXCOVER problem.

b) Prove that VERTEXCOVER is a member of NP by constructing
 i) a polynomial time verifier for VERTEXCOVER, and
 ii) a polynomial time non-deterministic Turing machine that decides VERTEXCOVER.

c) Illustrate the polynomial time reduction \(3SAT \leq_p VERTEXCOVER\) for the boolean formula

\[
(x \lor y \lor z) \land (\overline{x} \lor \overline{y} \lor \overline{z}) \land (\overline{x} \lor y \lor \overline{z})
\]

by constructing the corresponding graph, and, if satisfiable, indicating the corresponding vertex cover.