CS 1511 Exam III

Robert Daley

15 April 2004

Instructions: This is a closed book, note and neighbor exam! You must show all work in the space provided on this test.

Name: _______________________

<table>
<thead>
<tr>
<th>Question</th>
<th>Percent</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
Question 1 (25 points)

a) Give the definition of the GG (Generalized Geography) problem.

b) Prove that $GG \in PSPACE$.
 Be sure to include correctness and complexity bounds in your proof.
Question 2 (25 points)

a) Consider the following problem:

\[2COLOR = \{ <G> \mid \text{nodes of } G \text{ can be colored with 2 colors such that no two nodes joined by an edge have the same color} \} \]

b) Prove that \(2COLOR \in P \).

 Be sure to include correctness and complexity bounds in your proof.
Question 3 (25 points) Fill in the blanks with the following terms, where no term may be used *more than once* (any such occurrence will be marked WRONG).

a) \underline{3SAT} is NP-complete.

b) \underline{ALBA} is decided by a deterministic exponential time Turing machine.

c) \underline{ALLNFA} is PSPACE-complete.

d) \underline{2SAT} is decided by a deterministic polynomial time Turing machine.

e) \underline{TQBF} is decided by a deterministic polynomial space Turing machine.

- A_{LBA}
- $3SAT$
- ALL_{NFA}
- $2SAT$
- $TQBF$
Question 4 (25 points)

a) Give the definition of the 3COLOR problem.

b) Prove that 3COLOR is a member of NP by constructing

 i) a polynomial time verifier for 3COLOR, and

 ii) a polynomial time non-deterministic Turing machine that decides 3COLOR.

 c) Illustrate the polynomial time reduction \(\not= SAT \leq_p 3COLOR \) for the boolean formula

 \[
 \phi = (x \lor \overline{y} \lor z) \land (\overline{x} \lor y \lor \overline{z}) \land (\overline{x} \lor \overline{y} \lor \overline{z})
 \]

 by constructing the corresponding graph \(G \), and, if \(\phi \) is satisfiable, indicating a satisfying truth assignment and the corresponding coloring for \(G \).